
A Not-Entirely Gentle Introduction to InterViews

Mark Roseman (roseman@cpsc.ucalgary.ca)

Department of Computer Science, University of Calgary

June 10, 1992

Abstract

InterViews is a C++ class library designed for building graphical interfaces on top of X11.

It was implemented by Mark Linton's group at Stanford University. This document and the

examples contained herein are largely based on InterViews 3.1�, in particular the InterViews

Reference Manual dated May 26, 1992. Because this is an alpha-version, details will change

when the \real" release becomes available.

1 What is InterViews?

InterViews is a C++ class library completely encapsulating X11. Unlike many other X toolkits,

you don't need to know about the underlying X stu� (Xlib etc.) | honestly! InterViews provides

a number of higher level components for constructing X based interfaces.

Key features include:

� high level support of common interface components

� new components easily de�ned by inheritance

� nice support for combining interface components using T

E

X composition model

� look-and-feel independence, e.g. same application can have a Motif or Open Look interface

� support for TIFF images

� some simple container classes

� some lower level operating system stu� (sockets, �les, etc.)

� support for graphical editors (Unidraw)

1.1 Evolution of InterViews

Currently, the system is at version 3.1�. There was a major rethinking done between version 2.6

and 3.0, the main implication being that there are two \models" of doing interfaces still present

in the system. The 2.6 stu� is being phased out as components are being built to support the 3.0

standards. We'll keep mostly to the 3.0 stu�. There are some widgets however that haven't been

redone in 3.0, though there's usually ways to get at them.

1

2 Hello world

Here's \hello world" done in InterViews:

1 #include <IV-look/kit.h>

2 #include <InterViews/background.h>

3 #include <InterViews/session.h>

4 #include <InterViews/window.h>

5

6 int main(int argc, char** argv) {

7 Session* session = new Session("Hello world", argc, argv);

8 WidgetKit& kit = *WidgetKit::instance();

9 session->run_window(

10 new ApplicationWindow(

11 new Background(

12 kit.label("Hello world"),

13 kit.background()

14)

15)

16);

17 }

Line 7 instantiates a Session object, which connects up to the X server and runs the main

event dispatching loop. You always do this to start (one per program).

Line 8 sets the variable kit to be a pointer to the WidgetKit object (of which there is only

one | the instance() method always returns a pointer to that object). The WidgetKit is used

to create standard user interface components, such as buttons, menus, etc..

Line 9 tells the Session object to run a window, i.e. take a window and handle all events etc.

This won't terminate until a call to Session::quit() (or a crash), and since there isn't such a

call anywhere here, this program will keep running. The one parameter to Session::run window

is the window to work with (speci�ed in lines 10{15).

Line 10 creates the window, which is in this case an ApplicationWindow (as opposed to say a

Popup window). The one parameter for the ApplicationWindow constructor takes a glyph object.

A glyph is the basic interface building block in InterViews | speci�c objects are subclassed from

glyph.

Lines 11{14 create the glyph that will be displayed in the window. In this case the glyph is a

Background glyph (which displays a particular color background behind some other glyph). The

glyph in front is a label (pulled from kit.label()), and the background color is the default

background color, pulled from kit.background().

3 Compiling and running programs

To actually compile and run the program, stick it in a �le \hello.c" in some directory. Set your PATH

variable to include the directory /home/grouplab/src/iv3.1/iv/installed/bin/SUN4. Check

2

that which ivmkmf points to the ivmkmf in that directory, and not the one in /usr/local/X11/bin

| use a link if not.

Type the following into a �le called \Imake�le":

#ifdef InObjectCodeDir

Use_libInterViews()

ComplexProgramTarget(test)

MakeObjectFromSrc(hello)

#else

MakeInObjectCodeDir()

#endif

Do a setenv CPU SUN4, type ivmkmf and then make Makefiles. Finally, type make to compile

your program.

4 More Widgets

The following give some more widgets de�ned in WidgetKit that can be used. The \names" of the

widgets are the member functions of the WidgetKit used to create them.

4.1 Bevels

inset frame(Glyph*) creates a frame making the contents look recessed

outset frame(Glyph*) creates a frame making the contents look raised

bright inset frame(Glyph*) is similar to inset frame

4.2 Labels

label(char*) creates a text label

4.3 Buttons

push button(char*, Action*) creates a push button having a text string as a label, and will do

a callback (via the Action) when pressed | more later on callbacks

push button(Glyph*, Action*) creates a push button like above but specifying some arbitrary

glyph (e.g. an image) as the button contents

default button(char*, Action*) creates a default button (e.g. \Okay")

3

default button(Glyph*, Action*) default button with arbitrary contents

palette button(char*, Action*) button that can be toggled on or o�

palette button(Glyph*, Action*) ...

check box(char*, Action*) creates a check box

check box(Glyph*, Action*) ...

radio button(TelltaleGroup*, char*, Action*) creates a radio button, where all radio but-

tons in a group share the same TelltaleGroup

4.4 Menus

Menu* menubar() returns a menubar... add menu items to this menubar using append_item(MenuItem*)

Menu* pulldown() returns a pull down menu

Menu* pullright() returns a pull right menu

MenuItem* menubar item(char*) returns, e.g. a File menu

MenuItem* menubar item(Glyph*) ...

MenuItem* menu item(char*) returns a standard text menu item; associate a callback with it by

using MenuItem::action(Action*) or attach a submenu with MenuItem::menu(Menu*)

MenuItem* menu item(Glyph*) ...

MenuItem* check menu item(char *) returns a checkable menu; use MenuItem::state()->test(is_chosen)

to check if set

MenuItem* check menu item(Glyph*) ...

MenuItem* radio menu item(TelltaleGroup*, Glyph*) returns a radio button like menu item

MenuItem* menu item separator() returns a separator line

4.5 Adjusters

Adjusters are used to adjust some parameter, typically a variable or perhaps the view on a surface.

You can attach Observer objects to adjusters which will be noti�ed when the adjuster changes.

hslider(Adjustable*) returns a horizontal slider

hscroll bar(Adjustable*) returns a horizontal scrollbar

vslider(Adjustable*) returns a vertical slider

vscroll bar(Adjustable*) returns a vertical scrollbar

panner(Adjustable*,Adjustable*) returns a 2-dimensional panner

4

5 Laying out widgets

InterViews follows a T

E

X model for composing interfaces from individual widgets, using boxes and

glue, etc. This is made easier using a LayoutKit object, which like with the WidgetKit object, you

can get at via LayoutKit::instance(). The following gives some of the common operations from

the LayoutKit.

hbox(Glyph*, ...) creates a horizontal box containing a number of glyphs

vbox(Glyph*, ...) creates a vertical box containing a number of glyphs

overlay(Glyph*, ...) creates a box where a number of glyphs are overlayed

deck(Glyph*, ...) creates a box containing a number of glyphs where only one is visible; which

is visible can be retrieved by Deck::card() and changed by Deck::flip_to(int)

hglue() returns a piece of horizontal glue

vglue() returns a piece of vertical glue

As an example, this program will put up a window containing the label \good" above the label

\bye," separated by a piece of glue.

#include <IV-look/kit.h>

#include <InterViews/background.h>

#include <InterViews/layout.h>

#include <InterViews/session.h>

#include <InterViews/style.h>

#include <InterViews/window.h>

int main(int argc, char** argv) {

Session* session = new Session("Himom", argc, argv);

WidgetKit& kit = *WidgetKit::instance();

const LayoutKit& layout = *LayoutKit::instance();

return session->run_window(

new ApplicationWindow(

new Background(

layout.vbox(

kit.label("good"),

layout.vglue(),

kit.label("bye")

),

kit.style()->background()

)

)

);

}

5

6 Dialog objects

While the WidgetKit object provides some low level interface components, the DialogKit aims to

provide higher level components. Not much has been implemented yet.

field editor(char*, Style*) creates a �eld editor, used to edit a string; the �rst parameter is a

sample string, the second can be obtained via Session::instance()->style(); the resulting

string can be obtained via FieldEditor::text()

file chooser(char*, Style*) creates a dialog box for selecting a �le, the �rst parameter being

the directory to begin looking in; FileChooser::selected() returns the name of the selected

�le

The InterViews sample application \doc" contains a lot of code which will eventually migrate

into the main libraries (see source code in /home/grouplab/src/iv3.1/iv/src/bin/doc). The

\DialogMgr" contains some higher level components for doing some standard sorts of dialog boxes.

The code snippet below shows an example of presenting a dialog box to get a single line of input.

mgr = new DialogManager();

if ((s = (char*) mgr->ask(nil, "Prompt string", "Initial string")) != nil) {

// do something with s

}

7 Actions

As mentioned above, InterViews uses Action objects to do callbacks for things like buttons, menus,

etc. These are done (for now) via preprocessor macros, although this will eventually get changed

to use templates. The code fragment below shows how to create a callback to a particular method

of an object.

class App {

void mymethod();

};

declareActionCallback(App);

implementActionCallback(App);

void App:mymethod() { /* handle the callback */ }

main() {

App* a = new App;

session->run_window(

new ApplicationWindow(

kit.inset_frame(

6

layout.hbox(

kit.push_button("Mymethod",

new ActionCallback(App)(a, &App:mymethod)

),

layout.hglue(),

kit.push_button("Quit", &Session::instance()->quit)

)

)

)

);

}

8 Changing the Look and Feel - WidgetKit Revisited

WidgetKit provides a convenient way of creating standard interface objects like buttons, menus,

etc. Usually this is the most convenient way to create them. If you want to customize such objects,

you can instantiate them directly, without using WidgetKit. For example, while you could get a

button by using the method:

WidgetKit::push_button(Glyph*, Action*);

you could also instantiate a button more directly, using:

Button::Button(Glyph*, Style*, TelltaleState*, Action*);

The Style and TelltaleState control the appearance and behavior (or look and feel) of the

button. Styles contain attributes for such things as fonts and colors, while a telltale handles several

di�erent appearances for an object (such as pushed or not pushed). The WidgetKit operation for

creating a button uses a particular style and telltale. Typically, all operations for a WidgetKit will

have a comparable look and feel.

More interestingly, this suggests that by simply changing the WidgetKit to instantiate objects

with a di�erent style, you could use the same code in your program to create an entirely di�erent

look and feel. In fact, InterViews does this to support several di�erent styles. The Session object

interprets command line arguments (or X defaults), and can also control exactly what WidgetKit

is used when you call WidgetKit::instance(). The table shows the possible styles.

Option X Default Description Notes

-motif *gui:Motif Motif style

-smotif *gui:SGIMotif very nice customization of Motif current default

-openlook *gui:OpenLook Open Look style not implemented yet

-monochrome *gui:monochrome monochrome version of Motif not in 3.1�

9 More on Windows

So far the examples have shown using a single ApplicationWindow. Here's a few more things you

can do.

7

Running multiple windows. To use multiple windows, create them (e.g. Window* w = new

ApplicationWindow(Glyph*)) and then call w->map() rather than Session::run_window(). Use

Session::run_window() for the �rst window, or map the �rst followed by doing Session::run().

TopLevel windows. Usually, you only have one ApplicationWindow, which interprets things

like geometry requests on the command line, etc. If you want more than one window, the remainder

are usually of class TopLevelWindow.

Transient windows. You can create transient windows, which are usually treated di�erently by

the window manager, for things like dialogs, etc. Use objects of type TransientWindow for this.

Popup windows. Popup windows are mapped onto the screen directly, without using the window

manager. As with the other windows, the constructor for class PopupWindow takes a glyph as its

only parameter. Popups are placed at a particular location, as shown in the following snippet.

PopupWindow* popup = new PopupWindow(g); // create a popup from some glyph

popup->place(x_location, y_location); // location to place popup

popup->align(0.0, 1.0); // specify alignment, here top left corner

popup->map(); // place popup on screen

10 Designing Your Own Glyphs

The standard widgets provided by WidgetKit and other bits of the InterViews library provide a

reasonable set of general widgets. However, often you need to design your own for doing things

that are application speci�c. These are designed as a subclass of Glyph.

10.1 Glyph protocol

A number of routines will typically need to de�ned.

request() asks a glyph to specify its desired size

allocate() informs a glyph an area has been allocated

draw() displays the glyph on a Canvas

undraw() tells a glyph its allocation is no longer valid

pick() identi�es which glyphs intersect a particular point

A PolyGlyph is a glyph containing multiple glyphs, such as boxes. A MonoGlyph contains a

single other glyph, but provides an easy mechanism to customize one small part of that glyph.

Glyphs tend to be lightweight objects which don't maintain information about their allocation,

which saves memory and allows them to be shared. However, a Patch can be wrapped around any

other glyph and will maintain allocation information, providing the ability to for instance redraw

an object easily.

8

10.2 Drawing Operations

Drawing is done on a Canvas. The Canvas class provides methods to draw lines, curves, strokes,

rectangles, �lls, characters, bitmaps, images, etc. as well as doing clipping and damage. The class

uses objects of type Brush (containing a pattern), Color (speci�ed as RGB or lookup via name),

Font, Transformer (for doing transformations on Canvas operations), Bitmap, and Raster.

10.3 Input Handling

Input is handled by a subclass of the InputHandler glyph. This glyph surrounds any other glyph,

and provides methods which can be customized for particular uses. These methods are automati-

cally called for events including mouse movement, press, drag, release, double clicks, and keystrokes.

An ActiveHandler subclass de�nes methods for mouse enter and leave events.

11 Other Bits

This section gives a bit of info on some other assorted classes, libraries, etc. that are a part of

InterViews. This is just an overview, details are available elsewhere.

11.1 Operating System Support

Support is provided (by way of classes) in a number of areas:

Directory provides support for directories in a �le system

File is an abstract class which can be extended to work with particular types of �les

Math provides an interface to some standard mathematical functions

Memory provides some standard operations on arrays of bytes

String provides operations on arrays of characters

List provides a parameterized class for dealing with lists of objects, including iterating through

the list

Table provides similar support for hash tables

11.2 Unidraw

Unidraw is a framework for designing domain speci�c graphical editors. These could include drawing

editors, circuit diagrams, interface builders, etc. Unidraw was built on top of the 2.6 version of

InterViews, and hence doesn't use glyphs, so is a bit harder to use. Unidraw is a very rich framework,

allowing powerful editors to be speci�ed using the following abstractions.

Components are graphical representations of elements in a domain. They are divided into sub-

ject and view objects.

Tools support direct manipulation of components, using animation and other visual e�ects.

9

Commands de�ne operations on components; they are similar to normal messages, but also carry

state (for undo, among other things).

External representations are used to convey domain-speci�c information outside the editor, for

instance a PostScript representation.

11.3 Communications

InterViews manages a Dispatch library, which acts as a front end to normal Unix sockets. A user-

de�ned IOHandler can be linked to a socket, so that particular events on the socket will result in

the IOHandler being noti�ed. This is managed by a Dispatcher object.

The Dispatch library also provides mechanisms to send high level application messages to other

programs. RpcWriter objects are created to send speci�c messages, while RpcReader objects

contain methods which are called when speci�c messages are received. RpcPeer objects combine

an RpcWriter and an RpcReader to allow easily connecting to remote sockets.

11.4 TIFF Images

There is a library containing routines to read, display, and manipulate TIFF image format �les.

This is apparently not InterViews speci�c, but there are some added hooks for use with InterViews.

11.5 Sample Applications

A number of sample applications are provided with the InterViews distribution.

alert pops up a dialog box with a message in it

dclock is a clock program

doc is a WYSIWYG document editor and the prime example of glyphs code; much of the document

handling etc. here will probably end up in the toolkit itself

ibuild is an interface builder (created with Unidraw) which unfortunately generates InterViews

2.6 code (no idea when it will do glyphs)

idraw is an excellent drawing editor built using Unidraw

logo displays the InterViews logo in a window

mailbox monitors your incoming mail

12 Further Work

A number of future modules are planned for InterViews, including:

� add more widgets to WidgetKit

� add Open Look style support

� audio, video, and other multimedia objects

� a FigureKit for doing structured graphics (replacing Unidraw?)

10

